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A method based on the approximation of the radial pressure pro"le is developed to
analyze the acoustic performance of a sudden expansion and of an expansion chamber at
low frequencies. This model is able to predict very accurately the added length of an
expansion which includes neither porous material nor a perforated tube. It can also be
applied when a bulk-reacting lining and perforated tube are included. This model of
a dissipative silencer gives results which compare very favourably with experimental data.
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1. INTRODUCTION

The cylindrical dissipative silencer is one of the most commonly used devices in practical
#ow duct acoustic. Its acoustic performance can be predicted in the general case (with #ow,
with arbitrary external shape, etc.) by a FEM approach [1] or by mode matching
techniques [2, 3]. However, those methods require a considerable numerical e!ort which
limits their usefulness in practice.

The purpose of this paper is to derive a simple model which can be used to predict the
acoustic performance of a bulk-reacting dissipative silencer at low frequencies.

With a similar aim in mind, Wang [4] applied the decoupling method to the case of
a dissipative silencer with a perforated tube (the decoupling method was derived by Sullivan
and Crocker [5] for the case of an expansion chamber with a perforated tube). This method
assumes that the acoustic pressure is uniform on either side of the perforated tube and that
the di!erence between those two pressures is linked to the perforated tube impedance.
However, in most practical applications, the perforated tube is introduced to avoid erosion
of the porous material and is not supposed to have any signi"cant acoustical e!ect.
However, when the impedance of the perforated tube is small or vanishes, the decoupling
method fails to give an accurate description of the silencer.

The key point of the model developed in this paper is that it takes into account the actual
radial variation of pressure (and then of radial velocity) in an approximate way. In the
presentation given here, this e!ect is introduced via an equivalent admittance linking
0022-460X/01/230461#13 $35.00/0 ( 2001 Academic Press



462 Y. AURED GAN E¹ A¸.
the di!erence in mean pressures between the air and the material to the radial velocity at the
interface. Then, even in the absence of a perforated tube the model can give an accurate
description of acoustical performance.

In section 2, the principle of the method is described. By averaging the Euler
and continuity equations for both the air and the porous material, an eigenequation is
obtained by assuming that the radial velocity at the interface depends only on the di!erence
in mean pressure. The equivalent admittance is then given by assigning an appropriate
shape for the radial velocity pro"le. The eigenequation displays two kinds of solutions in the
lined section; one corresponds to the classical plane or quasi-plane wave, the other takes
into account most of the e!ects of higher order modes. This approach is applied in section
3 to a sudden expansion with lining in the large section. The model is applied to the case
with neither porous material nor perforated tube in order to provide an easy comparison
with an exact solution. In section 4, a model of the cylindrical dissipative silencer of "nite
length is given. Predictions based upon the model are then compared to experimental
results.

2. LOW FREQUENCIES APPROXIMATION

2.1. AVERAGED EQUATIONS

In this Section, the basic linear equations governing the propagation of axisymmetric
#uctuations in a duct of radius r

b
are given. This duct consists of an inner cylinder with

radius r
a
, referred to as region A, and of an outer coaxial cylinder with inner and outer radii

of r
a
and r

b
, respectively, referred to as region B (see Figure 1). Between those two regions,

a rigid perforated screen induces a pressure jump proportional to the radial velocity.
The #uctuating variables used here are pressure p, axial velocity u and radial velocity

v with subscript a or b depending on the region. In region A, the #uid is characterized by the
compressibility i

a
and the density o

a
. In region B, a porous material with a rigid frame can

be present and is described using an equivalent #uid model. The porous medium is then
characterized by an e!ective compressibility i

b
(u) and an e!ective density o

b
(u) depending

on the frequency u. These e!ective quantities are expressed in Appendix A as functions of
the characteristics of the material and of the saturating #uid.

Taking a time dependence e+ut, the propagation equations can be found from the
continuity and Euler equations:

jui
i
p
i
"!+ ) v

i
(1a)
Figure 1. Typical geometry and pressure pro"le.
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where i"a or b.
If there is no screen, the radial velocity and the pressure are continuous at r"r

a
. With

a perforated screen (the impedance of the screen is z
s
), it can be assumed that the radial

velocity is still continuous but the pressure jumps from p
b
(r
a
) to p

a
(r
a
) with p

b
(r
a
)!p

a
(r
a
)"

z
s
v
a
(r
a
)"z

s
v
b
(r
a
).

By integrating equation (1a) and projecting equation (1b) on the axial direction, the
following averaged equations are obtained:

>
a
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a
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, (2a)
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where >
i
"jui

i
S
i
is the admittance per unit length, Z

i
"juo

i
/S

i
is the impedance per unit

length, pN
i
is the mean pressure over the section S

i
(S

a
"nr2

a
and S

b
"n (r2

b
!r2

a
)), ;

i
is the

acoustical #ow rate over the section S
i
(integral of axial velocity over the section) and

q"2nr
a
v
a
(r
a
) is the #ow rate per unit length through the perforated screen.

The #ow rate q is assumed to be linearly related to the di!erence in mean pressure
between the two regions: q">(pN

a
!pN

b
). Thus, with an axial dependence of the form e~+kx,

two equations for the mean pressures can be found:

C
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a
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a
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0B, (3)

where the propagation constants C
a

and C
b

in regions A and B are given by C2
i
"Z

i
>
i

(i"a, b).

2.2. DETERMINATION OF THE WAVENUMBERS

The determinant of system (3) must vanish in order to have non-trivial solutions. This
gives the eigenequation for the wavenumber k:
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m
#Z

m
>) k2#(C2

m
)2!1

4
(DC2)2#2(Z

m
C2
m
!1

4
DZDC2)>"0, (4)
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b
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b
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.

The solutions are written

k2
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"!C2

m
!Z

m
>(1!A),

k2
2
"!C2

m
!Z

m
>(1#A),

where

A"A1#
DC2

2Z2
m
>A

DC2

2>
#DZBB

1@2
. (5)

The values of k
1

and k
2

are chosen so that their imaginary parts are negative (obviously,
!k

1
and !k

2
are also solutions of the eigenequation). By substituting k by k

1
and k

2
in
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equation (3), it can be seen that the mean pressures and the acoustical #ow rates in the two
regions are related for the "rst solution by

pN
b1
"mpN

a1
and Z

b
;

b1
"mZ

a
;
a1

and for the second solution by

;
b2
"!m;

a2
and mZ

a
pN
b2
"!Z

b
pN
a2

where

m"

(DC2#DZ>#2Z
m
A>)

2Z
a
>

. (6)

When DC2 is equal to zero (i.e., no porous material in the region B), the coe$cient m is equal
to 1. In this case, the "rst solution is exactly a plane wave (pN

b1
"pN

a1
) and the second

solution corresponds to a transverse wave with a zero total acoustical #ow rate
(;

a2
#;

b2
"0). It means that the mass transmission along the duct is only connected to the

plane wave.
When the porous material in region B is not too resistive (i.e., when DC2@C2

m
), m is close

to 1. In this case, the "rst wave is not exactly a plane wave (pN
b1
!pN

a1
" (m!1)pN

a1
O0, it

becomes a quasi-planar wave) and mass will be transmitted by the second wave
(;

a2
#;

b2
"(1!m);

a2
O0).

2.3. DETERMINATION OF THE EQUIVALENT ADMITTANCE

The remaining problem is the determination of the admittance
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.

To compute the coe$cients d
a
and d

b
, the shape of the pressure and of the radial velocity

have to be known in regions A and B. For that purpose, approximate pro"les of velocity
and pressure are needed in the two regions. For the problem studied in this paper (area
expansion), a good approximation of the acoustic "eld downstream from an expansion is
needed. Thus the approximate pro"les are chosen with this aim in mind.

In region A, the radial velocity vanishes when r"0 and is supposed to increase linearly.
Thus, v

a
(r) is approximated by v

a
(r)"Ar. By integration of the radial projection of equation

(1b), the pressure p
a
(r) is given by p

a
(r)"p

0a
!juo

a
Ar2/2. In this approximation, the

coe$cient d
a
can easily be computed and d

a
"r

a
/4.

In region B, the radial velocity is chosen (i) to ful"ll the boundary condition at the outer
wall: v

b
(r
b
)"0; (ii) to "t the radial velocity just behind an expansion with a large area ratio.

Thus the axial velocity is taken in the form v
b
(r)"B(1/r2

b
!1/r2) [7] and, by integration, the

pressure is p
b
(r)"p

0b
!juo

b
B(r/r2

b
#1/r). With this approximate shape, the coe$cient d

b
is

equal to d
b
"r

a
f (a) with a"r

a
/r

b
and

f (a)"
(1!a) (3#a)

3(1#a)2
.



MODELLING OF DISSIPATIVE SILENCERS 465
It can be noted that for moderate area ratio (a&0)5) a linear radial velocity pro"le in region
B give a value of d

b
very close to the value obtained with the chosen pro"le. Then the

admittance > is written

>"
2n

juo
a
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1

4
#

o
b

o
a

f (a)#
z
s

juo
a
r
a
D
~1

. (7)

2.4. MODEL WITHOUT POROUS MATERIAL

In this sub-section, region B is "lled with the same #uid as region A. The sound velocity in
the #uid is c

0
and o

0
is the density. Then the admittances per unit length are Z

a
"juo

0
/S

a
and Z

b
"juo

0
/S

b
. The propagation constants are C

a
"C

b
"C

m
"!ju/c

0
and DC2"0.

The wavenumbers are

k
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and
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u
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#
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S
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. (9)

It can easily be seen that pN
a1
"pN

b1
. Thus, the "rst solution corresponds to the classical plane

wave in the duct and is not in#uenced by the value of the admittance >. For the second
solution, the mean pressures in both regions are related by S

a
pN
a2
"!S

b
pN
b2

.
Equation (9) is given, for instance, by Pierce [8] when there is a perforated tube between

the two regions and can be deduced from the results of Kergomard et al. [9] in the case of
a perforated tube modelled discretely. The main di!erence is that the model presented here
takes into account, in an approximate form, the di!erence between the actual pressure and
the mean pressure in the two regions. This di!erence is included in the admittance>. Thus,
this model is also valid when the screen impedance goes to zero.

When the perforated screen is absent z
s
"0, the admittance > is given by

>"A
juo

0
2n A

1

4
#f (a)BB
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and the wave number of the second solution is

k
2
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u
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where c2"
2

a2(1!a2) (1/4#f (a))
.

This second mode is evanescent as long as the pulsation frequency u is lower than
u

c
"cc

0
/r

b
. For a"0)5, the value of u

c
is 4)43 c

0
/r

b
which is reasonably close to the cut-o!

pulsation frequency 3)83 c
0
/r

b
for the second axisymmetric mode of a circular duct with

radius r
b
. This comes from the similarity of the pressure pro"le of the second approximate

solution and of the pressure pro"le of the exact second mode with a"0)5 (see Figure 2a).
When a is much smaller than 1 (see Figure 2b), those pro"les are very di!erent. It can be
seen from this "gure that the second approximate solution is especially adapted to take into
account most of the e!ects of the higher order modes near a sudden expansion.



Figure 2. Normalized pressure for the second solution p
2
/pN

a
as a function of the normalized radius r/r

b
with

a"0)5 (a) and a"0)05 (b); continuous line: approximate solution, dotted line: mean pressure in regions A and B;
dashed line: second axisymmetric mode.
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3. SUDDEN EXPANSION AT LOW FREQUENCIES

3.1. TRANSFER MATRIX OF A SUDDEN EXPANSION

Two semi-in"nite ducts of radius r
a
and r

b
are joined at x"0. In the small duct (x(0,

radius r
a
) only a plane wave propagates: p

0
"p`

0
e~+k0x#p~

0
e+k0x where k

0
"u/c

0
. This
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wave induces an acoustical #ow rate equal to;
0

at x"0 with Z
a
;

0
"jk

0
(p`

0
!p~

0
). In the

lined duct (x'0, radius r
b
'r

a
), the model proposed in section 2 is applied when the

frequency is lower than u
c
. In the in"nite lined duct, there is no incoming evanescent mode

(subscript 2). Thus the wave in this duct can be seen as the sum of three terms with an axial
dependence e~+k1x, e+k1x and e~+k2x (the imaginary part of k

1,2
having been taken as negative).

Accordingly, the mean pressures in regions A and B of the lined duct are written:
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where m is given by equation (6).
The boundary conditions at x"0 are the continuity of the mean pressure and #ow rate

for r(r
a

and vanishing of the #ow rate for r
a
(r(r

b
:
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From equations (11) and (12), a continuity of volume velocity can be written
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1
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It can be noticed that;
0

is the real volume velocity in the small tube but that;
1

is not, for
mO1, the total volume velocity of the "rst mode in the large tube, as part of the acoustic
mass #ow for mO1 is transmitted by the transverse mode.

The relation between the mean pressure in the small tube p
0
"p`

0
#p~

0
and the mean

pressure associated with the quasi-planar mode in region A of the lined duct p
1
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1
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1
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p
1
"p

0
!z

add
;

0
(14)

where

z
add

"

m2Z
a
/Z

b
(1#m2Z

a
/Z

b
)

Z
a

jk
2

.

Equations 13 and 14 lead to the transfer matrix for the plane waves
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Figure 3. Variation of the added length D¸/r
a

at the zero frequency limit as a function of the radius ratio
a"r

a
/r

b
; continuous line: equation (16), dashed line: reference [10].
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With this approximate model, the complex acoustic phenomena in the expansion linked to
the interaction of planar and transverse wave is simply described by introducing an
additional impedance at the entrance of the sudden expansion.

3.2. EXPANSION WITHOUT POROUS MATERIAL

When region B is "lled with the same #uid as region A, the continuity of volume velocities
between the plane modes on both sides of the expansion (;

0
";

1
) can be applied in this

approximate model. It can be noted that this relation is also veri"ed in the exact model (see
for instance reference [10]).

From equation (14), the plane mode pressures in the two ducts can be related by
p
1
"p

0
!juo

0
D¸(u)u

0
where u

0
is the acoustic velocity of the plane mode in the small tube

u
0
";

0
/S

a
and D¸(u) is the added length given by
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z
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juo
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2

,

where jk
2

is a real and positive number in the absence of a resistive screen (real part of
z
s
"0).
Without any screen and when uP0, this added length tends toward

D¸"r
a

1!a2

ac
"r

a A
(1!a)2(1!a2) (15!2a!a2)

24 B
1@2

. (16)

This result is compared in Figure 3 with the formulae for the added length given in reference
[10] with a precision of 0)1% for the zero-frequency limit. The agreement is good over all
the a range.



Figure 4. Geometry of the lined expansion chamber.
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Thus, this very simple model allows a good approximation of the acoustic behaviour of
a sudden expansion at low frequencies.

4. DISSIPATIVE SILENCER

4.1. TRANSFER MATRIX OF AN EXPANSION CHAMBER

An expansion chamber of length ¸ is "lled with porous material for r
b
'r'r

a
. This

chamber is connected with two pipes of radius r
a

(see Figure 4). The approximate model
developed above is applied to this chamber. The wave in the lined chamber can be seen as
the sum of four terms with an axial dependence e~+k1x, e+k1x, e~+k2x, and e+k2x. The boundary
conditions are the vanishing of the mean axial velocity in the porous media at x"0 and
¸ and the continuity of the mean velocity and pressure in zone A at x"0 and ¸. Thus, the
problem can be completely solved in the context of the present approximate model.
Nevertheless, signi"cant simpli"cations appear when the amplitude of the most attenuated
mode (wavenumber k

2
) created at one side of the chamber can be neglected when it reaches

the other side (i.e. De~+k2L D@1). This assumption is true for most practical applications. In
this case, the transfer matrix of an expansion chamber can be seen as the product of the
transfer matrices of an expansion,T

e
, of quasi plane wave propagation from 0 to ¸, T

p
, and

of a contraction, T
c
, where

A
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I
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p
0
;

0
B with T

e
"C

1

0

!z
add

1 D ,

A
p
11
;
11
B"T

p A
p
I
;
I
B with T

p
"C

cosh ( jk
1
¸)

!sinh ( jk
1
¸)/z

c1

!z
c1

sinh ( jk
1
¸)

cosh ( jk
1
¸ ) D
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B with T

c
"C

1

0

!z
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The transfer matrix of the chamber can be written:

A
p
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t
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c
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p
T
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where A"cosh ( jk
1
l)#z

add
sinh ( jk

1
l )/z

c1
and C"!sinh ( jk

1
l )/z

c1
. The transmission and

re#ection coe$cients of this chamber are

¹"

!2Z
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C

((Z
c0

C!A)2!1)
and R"

(A2!(Z
c0

C)2!1)

((Z
c0

C!A)2!1)
.

4.2. EXPERIMENTAL VALIDATION

The transmission and re#ection coe$cients of an expansion chamber with porous
material were investigated experimentally in order to test the validity of the approximate
model. The chamber was inserted in a tube in which linear acoustical planar waves
were excited. On one side (side 0, see Figure 4), an acoustic source provided a wave in the
frequency range 50}1500 Hz. The acoustic pressure in tube 1 is written as
p
0
"p`

0
e~+k1 0x#p

0
e~+k1 0x where p`

0
and p~

0
are the incident and re#ected pressures on side 0,

k3
0
is the wave number in the tube taking into account the viscothermal attenuation and x is

the axial distance from side 0 of the chamber. Four microphones in tube 0 allow an
overdetermined estimation of p`

0
and p~

0
. The overdetermination is used, with

a least-squares method, to increase the accuracy of the experimental results. On the other
side (side t), four other microphones are used so that the transmitted pressure p`

t
and the

pressure re#ected from the tube termination p~
t

can be determined on side t of the chamber.
Reciprocity and symmetry of the measured element imply that the transmission ¹ and

re#ection R coe$cients satisfy p`
t
"¹p`

0
#Rp~

t
and p~

0
"¹p~

t
#Rp`

0
. Thus, the

coe$cients

R"

p`
0

p~
0
!p`

t
p~
t

p`2

0
!p~2

t

and ¹"

p`
0
p`
t
!p~

0
p~
t

p`2

0
!p~2

t

can be computed from the microphone data as functions of the frequency:
For the given expansion chamber the inner radius is r

a
"15 mm, the outer radius is

r
b
"47 mm and the length is ¸"360 mm. The porous material is a mineral wool whose

acoustical parameters have been measured elsewhere. The values of the parameters (see
Appendix A) are: porosity U"0)99, tortuosity a

=
"1)1, resistivity p"75 000 kg m~3 s~1,

viscous and thermal characteristic lengths K"1]10~4m and K@"2]10~4m.
The mineral wool is known to be anisotropic. The resistivity perpendicular to the "bres

(radial direction) is bigger than the resistivity along the "bers (axial direction). The ratio
between the axial and radial resistivity is chosen to be 0)7 in accordance with reference [11].
The anisotropy can be easily introduced in the approximate model. The e!ective density to
be used depends on the direction on which the Euler equation is projected. The Euler
equation in the radial direction only appears in the determination of the equivalent
admittance >. Thus, the e!ective density in equation (7) is computed with the radial
parameters and the other densities are computed with the axial parameters.

The results, measured (circles) and predicted (using the approximate model, continuous
lines), are shown in Figure 5. The agreement is very good except on the absolute value of the
transmission when the frequency is above 1 kHz. It should be noted that the attenuation is
of the order of 60 dB in this region. Some experimental problems, like #anking transmission
through the external tube of the chamber, could explain this discrepancy. For comparison,
the results for an empty chamber are given by the dashed lines.

Nevertheless, it can be concluded that the approximate model gives an accurate
description of the performance of the dissipative silencer.



Figure 5. Absolute value of the re#ection (a) and transmission (b) coe$cients of an expansion chamber with
porous material. s: measurements, continuous line: approximate model, dashed line: results for the same chamber
without porous material.
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5. CONCLUSIONS

A method based on an approximation of the radial pressure pro"le is developed to
analyze the acoustic performance of a sudden expansion and of an expansion chamber at
low frequencies. This model is able to predict very accurately the added length of an
expansion where there is neither porous material nor perforated tube. It can also be applied
when a bulk-reacting lining and perforated tube are included. This model of a lined
expansion chamber gives results which compare very favourably with experimental data.
This approach could be extended to the case where a #ow is present [12] and it can describe
the appearance of hydrodynamic modes in this case.
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Owing to its simplicity, this approximate model of a dissipative silencer could be easily
implemented as a predictive tool for computing the acoustic performances in #ow duct
acoustics.
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APPENDIX A

In rigid-framed porous materials, the linear sound propagation can be described by
means of using an equivalent #uid with an e!ective density and an e!ective compressibility
which are complex values depending on the frequency [see, for e.g., references [13, 14]]. The
continuity and Euler equations are written as

i
e

Lp

Lt
"!+ ) v ,

o
e

Lv

Lt
"!+p,
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where p and v are the macroscopic acoustic pressure and velocity (the macroscopic velocity
is chosen as the continuity of velocity applies at an interface between the porous material
and air).

The e!ective characteristics of the material i
e
and o

e
can be obtained with the help of six

parameters: the porosity U, the tortuosity a
=

, the viscous and thermal permeabilities k
0
and

k@
0
, and the viscous and thermal characteristic lengths K and K@. The e!ective density is

equal to

o
e
"

o
0
a
=

U A1#
1

jx C1#
M

2
jxD

1@2

B ,

where the reduced frequency x is given by

x"
ua

=
k
0

vU

and the shape factor is

M"

8k
0
a
=

UK2
,

where o
0

is the density and v is the kinematic viscosity of the #uid. The e!ective
compressibility is equal to

i
e
"

U
o
0
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where the reduced frequency x@ is

x@"
uP

r
k@
0

vU

and the shape factor is

M@"
8k@

0
UK@2

,

where c
0

is the sound velocity and P
r
is the Prantl number in the #uid. In this paper, the

static thermal permeability is approximated [14] by k@
0
"UK@2/8 and the static viscous

permeability k
0

is related to the air #ow resistivity by p"o
0
v/k

0
.
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